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A detailed analysis is reported examining the local magnetic susceptibility x(r), 
in relation to the correlation function G(R) and correlation length ~, of a spheri- 
cal model ferromagnet confined to geometry I2=Ld-d 'X oO d' (d'~<2, d > 2 )  
under a continuous set of twisted boundary conditions. The "twist" parameter 

in this problem may be interpreted as a measure of the geometry-dependent 
doping level of interfacial impurities (or antiferromagnetic seams) in the 
extended system at various temperatures. For r / ~ 0 ,  V j e d - d ' ,  no seams are 
present except at infinity, whereas if r j=  I/2, impurity saturation occurs. For 
0 < r j < l / 2  the physical d o m a i n  Ophys=Dd-d'XO0 d' (D>L) ,  defining the 
region between seams containing the origin, depends on temperature above a 
certain threshold (T > To). Below that temperature (T<  To), seams are frozen at 
the same position (D~L/2r ,  d - d ' =  1), revealing a smoothly varying large- 
scale structural phase transition. 

KEY WORDS: Twisted boundary conditions; local susceptibility; spherical 
model; finite-size scaling. 

1. I N T R O D U C T I O N  

L o c a l  effects in  a va r i e t y  o f  r e s p o n s e  f u n c t i o n s  a re  k n o w n  to  exis t  for  

sys t ems  sub jec t  to  b o u n d a r y  c o n d i t i o n s  t h a t  s o m e h o w  p in  a we l l -de f ined  

o r d e r  p a r a m e t e r  field ( t r ( r ) ) - - o r  w a v e f u n c t i o n - - n e a r  a n  in terface .  (1), 2 In  

s u c h  s i t u a t i o n s  the  s y s t e m  m a y  possess  spa t i a l ly  v a r y i n g  i n t e r a c t i o n s  ( d u e  
to  the  p r e s e n c e  o f  a surface ,  t2-5)'3 m e m b r a n e ,  ~6-s~,4 o r  wa l l / 9 )  etc.),  g iv ing  

~Guelph-Waterloo "Program for Graduate Work in Physics, University of Waterloo, 
Waterloo, Ontario, Canada N2L 3G1. 

2 For rigorous and exact results see ref. 2. A recent review of subsequent developments is given 
in ref. 3. 

3 For a field-theoretic approach see ref. 5. 
4 See also the review articles by Fisher tT~ and Liebler. (8) 
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rise to rather complicated local thermodynamic behavior. Often an inter- 
face can be described more simply by a sharp defect plane of broken 
bonds brought about by nonperiodic boundary conditions in Ising-type 
systems tl~ or, for example, an inhomogeneity tl~ separating domains in 
a spherical ferromagnet under antiperiodic boundary conditions (APBC)- -  
both of which do not affect the spatial interactions. Recently, local varia- 
tional free energy functionals have been constructed with success in deter- 
mining the spatial (r) dependence of the near-critical energy density for a 
ferromagnetic Ising model in the vicinity of a wall and grain boundary; tg) 
however, similar progress for corresponding O(n) systems exhibiting 
continuous symmetry (n >1 2) is quite limited. ~H-14) The main difficulty with 
these systems is the apparent lack of analytical and numerical tractability 
due to interference of spin-wave (Goldstone) excitations. A particularly 
important exception to this trend is in the spherical limit (n ~ ~ ) ,  where 
analytical solutions can be derived, and yet even for this model, only 
limited results with "realistic" boundary conditions (and interactions ~15'~6)) 
have emerged.t 11-14,17-2o) 

It is an established fact (due to Stanley in 1968) that in the limit 
n ~  ~ ,  the bulk O(n) model with translationally invariant interactions 
reduces to the spherical model (of Berlin and Kac, 1952) with a uniform 
spherical field--for references and a recent review of this topic in dis- 
ordered O(n) systems at large n, which involve a more complicated non- 
uniform spherical field, see Khorunzhy et aL ~5~ What is not so well known 
is that Stanley's technique for n ~ c~ can be applied exactly to the same 
fully finite system, ~7'21J in which the integration defined for the bulk is 
replaced by a discrete sum over the eigenvalues, without requiring the 
thermodynamic limit (of infinite size). Again, a uniform spherical field is 
sufficient to describe physical properties of the finite system, irrespective of 
whether the boundary conditions are periodic (PBC) or antiperiodic 
(APBC), provided that the (translationally invariant) interactions are not 
in any way affected. This simplifies the problem and distinguishes the 
mechanisms of broken translational invariance due to nonperiodic bound- 
ary conditions from that of the interactions requiring (under APBC) a 
mere shift in the eigenvalues of the system. It can then be proven that the 
fully finite (microcanonical) spherical model ~21) under PBC or APBC in the 
absence of an external field is precisely equivalent to the corresponding 
mean (or canonical) spherical modelJ 17) 

One aspect applicable to bulk O(n) models with n > 4  is that the 
singular part of the specific heat c~S)= -TO2f~s~/OT 2 is irrelevant [e.g., the 
critical exponent for e = 4 - d  << 1 is ct = - e ( n - 4 ) / 2 ( n b  + 8) < 0], and 
hence the free energy fts) in the absence of an external (magnetic) field 
gives no local linear response. However, relevant local features in the 



Spherical Model of Ferromagnetism 167 

magnetic susceptibily ;(=--02fts)/OH2lH~ o are expected to persist for 
general n (i.e., the critical exponent y > 0 for any n). An explicit derivation 
of z(r)  has indeed been shown to confirm this prediction for the 
ferromagnetic O(oo) model (of uniform spherical field) confined to a 
domain s  oo d' (d '  >/2) under APBC. ~ )  In that study, the non- 
uniform susceptibility is brought about by the appearance of a defect (or 
inhomogeneity), which in turn is due to the initial presence of a uniform 
external field H > 0 as spins on either side of the interface are coupled to 
the field in opposite senses (relative to their preferred local alignment). 
Equivalently, x(r) can be derived from the correlation function c2o) through 
the fluctuation-response theorem--  without the necessity of applying an 
external field at any point in the calculation. For nonsingular finite systems 
(d' ~<2) there is no sharp phase transition (L < oo) at T >  0, therefore the 
two approaches, using either the microcanonical or mean spherical model, 
are expected give identical results. ~5) 

In this paper I extend the work in refs. 11, 19, and 20 in order to 
analyze the local susceptibility z(r)  of a (hypercubic) spherical model 
ferromagnet confined to geometry ~2 = L d -  a" x oo d' under a more general 
class of nonperiodic boundary conditions known as twis ted boundary 
condition (TBC), defined through a continuously varying parameter _r 
(with components r l ,  .-., rd), of which PBC ( r j = 0 )  and APBC ( r j=  1/2) 
are two extremes. The TBC employed here are essentially the same as the 
ones used recently by Chakravarty t22) and Br6zin et aL, t23) and again, as 
with PBC and APBC for the O(oo) model, a uniform (or mean) spherical 
field is sufficient to describe the properties of the system, t~'tg'2~ This work 
compliments recent results t~4~ based on methods developed by Abraham 
and Robert tt3~ to determine phase separation for the same model under the 
influence of boundary conditions involving a nonuniform external field 
H(r). 

In Section 2 the susceptibility is derived from the (nonuniform) 
magnetization in the presence of a uniform external field, results of which 
are compared to the corresponding fluctuation-response theorem at H = 0. 
As expected, there is complete agreement between the two approaches. 
Comparison to the correlation length ~8' ~9~ ~( T;/2) [ i.e., x(r)/~ 2 ] reveals a 
nontrivial variation of amplitude near the bulk transition temperature T c. 
In Section 3, I derive a closed-form expression for the susceptibility 
confined to geometry s = L x co 2 in the vicinity of the interface (lrl << L for 
APBC). Under~ (0 < rj < 1/2) one finds that the interface is not only 
in a different position than under APBC, but its location may also depend 
on the temperature of the system, contrasting with APBC, where saturation 
occurs. ~ ~.2o) The limiting case I_rl--, 0 of z(r) is examined in detail revealing 
a smoothly varying large-scale structural phase transition at a temperature 

822/79/I-2-12 
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To < To, which has no analog in the bulk limit L ~ or, unless H >  0. (13'14) 

Section 4 is a summary of concluding remarks about the previous sections, 
including a discussion on the nature of the new phase transition observed 
in this work. 

2. LOCAL SUSCEPTIBILITY UNDER 
TWISTED B O U N D A R Y  CONDIT IONS 

We extend the methods developed by Barber and Fisher, (~7) as well as 
by Singh et aL, cm to evaluate the magnetization in the presence of a 
uniform external field for a fully finite spherical model ferromagnet 
(g2 = I-Ia= 1 Lj) under TBC, i.e., 

tr(r/+ Lj) = e2";~Ja(rj) ( j =  1 ..... d) (1) 

where _z is a vector whose components z~ ..... Zd lie in the interval (0, 1/2). 
For this problem the local (to be distinguished from the mean or overall) 
susceptibility is defined as 

z(r' T; s = (tr(r))H n - 0  , ~=1_~1>0 (2) 

where ( . . . )  denotes the (mean spherical) canonical ensemble average. 
Since translationally invariant (nearest neighbor) interactions J considered 
here are not affected by the imposed TBC, the problem is diagonalizable in 
terms of the plane wave modes, e ;k'r, just as in the PBC case(17); further- 
more, by the principle of local and overall spin equivalence, (la(r)l 2) = 1, 
which implies translational invariance of the correlation function G(R; I2) 
[see Eqs. (13) and (43)], a uniform spherical field 2 is sufficient to describe 
the physical quantities of the system/2~ After some algebra, we arrive at 
the exact formula 

z(r) = 1  E el, (3) 
2J {,,~} ~b + 2 5-'/=, (1 - c o s k j a )  

with 

L j ,  d 
kj 2rt(n./+ r j ) L j  ' nj=O, 1 .... , N j - 1 ,  NJ=--a N =  r-I (4) 

where a is the lattice cutoff and ~ = 2 / J - 2 d  is a thermodynamic variable 
expressible in terms of temperature T (and field H) through an elimination 
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of 2 with the spherical constraint [Eq. (43)]. Here e~ = N-1/2elk rSk, where 
ek are the usual distribution coefficients (17) 

(5) 

In Eq. (3) it is implied that only the real part ofx(r) shall contribute to the 
physics and, by symmetry, each component j (~ d) of the phase factor in e~, 
may effectively be replaced by a cosine. 

These coefficients have the properties 

and 

Z e [ , =  lekl 2= sin2(kja/2 ) N} -1 (6) 
r j = l  

" N-1 /2  lim ek = lekl (7) 
{rj ~ ( L  I + a)/2} 

which reproduce the overall 7 = N  -1 ~rZ(r)  and "long-distance" (X>) 
susceptibilities, respectively. The results derived here are in perfect agree- 
ment with those obtained under the more familiar PBC and APBC t17); for 
instance, 

and 

lim ek = N-1/26k, o (8) 

d 

lim ek = 1-[ {eiqqNj 1/2 csc[g(rtj+ �89 ) (9) 
{ r j ~  1/2} j =  I 

Consider the same system confined to a more general geometry /2 = 
lid* Lj x lid'= 1 L;, and then let Li ---, ~ in the d' dimensions. The result is 
again Eq. (3), but with d replaced by d* in the summation as well as 
distribution coefficients [see also Eqs. (15)-(18)]. The only implicit (bulk) 
d-dimensional dependence that remains unchanged is the variable ~b. The 
d * =  1 case ( ~ = L x  ~a,) for general d' ~<2 can be expressed in closed 
form (see Appendix of ref. 11) 

1 co { (1 - e2"/*)(coN+ ' -" + co')" l 
x ( r ) = 2 j  (co_--l) 2 1 -  ~ - ~ ~ - - - ~ , - ~  J (10) 
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where the Hermitian variable 09 is given by 

[~b(4+~)] ]/2 
~ = 1  +~-+ 2 (11) 

Again this agrees with results for APBC (r ~ 1/2) (1]) and PBC (r ~ 0). For 
TBC physical results are recovered by taking the real part of Eq. (10). 

2.1. Relationship to Correlation Function 

One expects the above results for the local susceptibility, derived from 
Eq. (2), to be precisely reproduced from the exact zero-field ( H = 0 )  
correlation function ~2~ G(R) = (a ( r )  a ( r ' ) )  = (a(0)  a (R) )  (with R = 
r - r ' )  for a system confined to a domain /2 = I-[d__" ~ Lj x oo d" through the 
fluctuation-response theorem: 

ks rx(r) -- Y. ~ G(R) (12) 
{Rj} {R~} 

with R j = a - r j  ..... Lj - r j  runs over the crystal in the finite directions 
( jed*) while R j = - - o o  ..... oo is unbounded in the infinite directions 
(ied'). 

The exact correlation function for a fully finite O(oo) model ferro- 
magnet (d'= 0) of uniform field ~b under TBC possessing translationally 
invariant (nearest neighbor) interactions has recently been determined ~2~ 
(see also Joyce t24) and Henkel and Weston ~]s)) 

ks r FIJ=, cosIkjRj) 
G(R; f2) = 2 -~  {~} ~b + 2 y~a= i ~ ~ _----~os kja) (13) 

Using the Poisson summation formula (PSF) 

c o s ( 2 1 r r q )  INq+R/a(X ) = ,,E0= COS 2zr(n + r) e ..... [2~(.+~)/N] 

(14) 

in which Iu(x ) is the modified Bessel function of integer order, along 
with the integral representation qb-~=~e-~X/2dx/2 in Eq. (13), and 
keeping Lj finite (for a l l j e d * )  while letting L i ~  ~ (for all led'), produces 
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a correlation function for a finite system confined to a (more general) 
geometry g2 = lid___ " i Lj x m a', viz. 

G(R; [ 2 ) = k B T [  ~ e -*:'/2 I-[ cos(2nryqj) e--XI(qjLj+ Rj)/a(X) 
4 J J o  j = l  qj oo 

d '  

x 1-[ [e-XI&/,,(x)] dx (15) 
i = 1  

Up to this point no approximation has been made. Applying the (infinite) 
d'-dimensional sum in Eq. (12) to Eq. (15), with aid of the well-known 
identity 

Iu(x)=e x (16/ 
u =  --oo 

effectively removes any structural dependence of G(R; I21 on d' and (of 
course) R,., where ied ' .  Summing over the remaining d* (finite) dimen- 
sions, by again using Eq. (14), gives precisely the results derived from 
( a ( r ) )  in Eq. (2) confined to general geometry 

2J {-A ~b + 2 z id__*I ( 1 -- cos kja) 

with an effective real contribution to the distribution coefficients 

~=~ cos[ ( k j / 2 ) ( 2 r j - a -  Lj) ] sin(kjLJ2) a ] 

(17) 

(18) 

Using this approach, no consideration has been given to an external field 
at any point in the calculation ( H =  0). 

It turns out that the exact expressions for G(R) and x(r) provide more 
information than is required to describe their relevant scaling behavior. To 
see this, I shall apply a continuum version of the fluctuation-response 
formula to the scaled correlation function under TBC confined to geometry 
s x oo d', i.e., Eq. (12) is replaced by 

/ L \ a  a* rl-~j ~ o~ 
kBTX(v)~{ -} 1-I J_., d(e.b 11 ; d(e,,),G(~_;O) (19) 

- k a /  j = l "  i=l - ~  

where, to leading order in IRI, L >> a, (2~ 

G(e; ~2) ~4zra/2---- ~ ~ I-I cos(2rczjqj) 
q ( d * )  j = I 

( Iq Y ,~<a- 2>/2 +_~• ) K<,,_2)a(2y(Iq+~_.d2+e~i) 'a) (20) 
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with scaled parameters 

y = (L/2a) x/~, -e• = R• _ell = all/L, _q = r/L (21) 

This sum over all q in d* dimensions now involves the other modified 
Bessel functions, K,,(x). Integration of G over the d' dimensions is isotropic 
and can be reduced to a one-dimensional integral 

oc, 2red'~2 delle~'-' = (ell) 2 (22) 
d(elt)J F(d'/2) ' ell 

i = l  --~r~. i = l  

the result of which is tabulated t-~s) The local susceptibility in this 
approximation becomes 

Z(q) " ~  ~, 1--[ cos(2~zr2qj) d(e• 
q{d*) j =  1 --tlj 

(y)td '--2)/2 
• Iq +_t• K(d*-2) /2(2y  Iq +_~• (23) 

proving that the integration of Eq. (20) over _ell in d' dimensions effectively 
removes any structural dependence of z(r/) on d' and (of course) ell, as it 
applies explicitly to the parameter y (which itself may implicitly depend on 
d' through the spherical constraint equationt~91). This is precisely the 
(universal) behavior observed in the exact calculation. 

Application of the PSF to Eq. (23) replaces the unbounded R. -space  
lattice sum by a reciprocal (k• sum, thereby reducing the problem 
from a d*-dimensional integral (over complicated arguments of Bessel 
functions) to a decoupled product of simple one-dimensional integrals 
contained within the distribution coefficients, whence 

Z(r l )~8J \a  } ~, ~2 In-+ (24) - n(d*)  y2+ ~12 

This result is valid at any temperature T > 0  and L >> a, provided r/ is 
sufficiently far from the interface. The physical contribution to the scaled 
distribution coefficients is now given by 

a- { [ ( _ 1 ) 1  sin~(nj+rj) '~ (25) e a + ~ = l -  I cos 2zt(nj+rj) r b. " ~(nj+rj)  J 
j = l  

a result which follows from Eqs. (17) and (18) directly through lowest- 
order infrared replacements (i.e., kj . . . .  ~) and a subsequent extension of 
the d*-dimensional sum over n to infinity in all directions. All other con- 
tributions are irrelevant to the properties inherent in Eqs. (24) and (25). 
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2.2. Relationship to Correlation Length 

In the region of first-order phase transition ( T <  To) the local suscep- 
tibility provided by Eq. (24) is asymptotically determined by those terms of 
the sum over . (d*)  for which In + _zl = 3, with the result 

8~(Z)  2 e~ --~2Z2 (26) X(r/) = g_~ y2 + n2z2, y2 ._. 

Here, g_~ denotes the multiplicity of terms making a dominant contribution 
to the expression for X(~/); in general, g~=2 m, where m (~<d*) is the 
number of components, rj of _z that equal 1/2--for each of these com- 
ponents, two terms (with nj = 0 or - 1  ) contribute equally toward the sum. 
Equation (26) reveals a close relationship between the susceptibility and 
the correlation length ~ as a function of boundary conditions. Under TBC 
this quantity is known to be (]8'19) 

L 
~( T; ~2),.~2(y2 + lt2.c2)l/2, 0 <~'c <~ (d*)1/2/2 (27) 

and upon substitution into Eq. (26) can be related to the simpler PBC 
(3=0) 

~2 /TBC ~ gre-~_ _ PBC' T <  Tc (28) 

Specializing to APBC and considering the overall [;~I-I]___ " , ~ d~/jX(_r/)] 
and "long-distance" (Z > = ) { t/i -~ 1/2 } ) susceptibilities, one gets 

~/2_y" ~f8y" 
(29) 

~U,,,,,,c~\~} \~-I,,,,,,c~\~U \~/pBc 
which may indeed apply generally to corresponding O(n) models. One 
observes that ;~/~2 is reduced below the PBC result, 1/2Ja 2, while )~>/~2 is 
enhanced for all relevant temperatures. At T >  T~(y >> 1), leading bulk 
behavior is realized [ ~ - ~ s ~ L / 2 y ~ ( T - T ~ )  -t/td-2)] with negative 
O(~s/L) finite-size corrections for )?/~2 and positive O(e -L/en) corrections 
for Z >/~2. 

In between these temperature regimes, particularly near T~, there 
appears a sigrificant variation of Z/~ 2 [for either ;? or Z(q)] involving the 
critical amplitudes. (26) If L ~ 00, this variation becomes cusplike. As far as 
exponents are concerned, the spherical model is special in that the bulk 
critical exponent r/ governing fluctuations in the order parameter is zero; 
hence, there is no singular temperature dependence near T~, even in the 
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hyperscaling regime (d<  d> = 4). However, for 2 ~< n ~< or, the exponent r/ 
(not to be confused with the reduced distance parameter _r/=r/L) is in 
general a small, positive number, and indeed we find by matching of first- 
order scaling forms in the region of second-order phase transition ~27'28) the 
following bulk behavior: 

'mo2(T) 
Z ~ ( T c - T )  "~ ( T <  To) (30a) 
3-- 5 ~ Y(T) 

. ( T -  To) "v ( T >  Tc) (30b) 

where mo(T) is the spontaneous magnetization density, [ ( T )  is the helicity 
modulus, {29) and v is a critical exponent pertaining to the bulk correlation 
length ~B. We expect from finite-size scaling that there is a minimum some- 
where in the core regime, where I T -  Tel L '/'= O(1), giving a measure of 
the critical rounding for d' ~< 2. It is here where the response of the system 
to the application of different boundary conditions is most sensitive, 
affecting the nature of the scaling behavior in a very significant way--for  
a discussion of this effect for the correlation length of the spherical model, 
see ref. 19. 

3. INTERFACE LOCATION AS A FUNCTION OF 
TEM PERATURE 

It is fortunate that for d* = 1 (O = L x ~d') ,  X(r/) can be expressed in 
closed form, since asymptotic results for a wide range of spatial orienta- 
tions at various temperatures are easily evaluated. From Eq. (23), and after 
some algebraic manipulation of certain one-dimensional sums, one finds 

l~L~2 { cosh[ 2y(~/- 1/2) ] sin rrz} X(rI, T;Lxood')~8J\ay j 1 ~ : ~ n r )  (31) 

where, as before, the real part must be taken to get the proper physics. This 
result can be checked with the exact version from Eqs. (10) and (11) by 
considering the asymptotic replacements coN~e 2y and co r se  2y", when 
I~1 << 1 and L >> a at constant y. From Eqs. (10) and (31), one finds that 
under APBC 

L--r I --q 

G(Rx, RII)=O~L f~ ds• G(e• ) (32) 
Rj .=r  

even in the scaled (or continuum) limit, as is also true for each component 
o f j  (~d*>  1) through a direct examination of the distribution coefficients 
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in Eqs. (18) and (25). This reveals the presence of an interface 6 in the 
system, resulting in a strongly uneven reduction of X(q), which happens to 
fie at (or very near) to the origin (rl~a/L) for all T. Under  the more  
general TBC ( 0 < 3 <  1/2) the interface defect separat ing ferromagnetic 
[ g ( r / ) > 0 ]  from diamagnetic [ X ( r / ) < 0 ]  domains  in the crystal is 
necessarily outside the range initially prescribed in calculating the extensive 
quantities of  the system: 0 < q  = r/L < 1. The volume of this domain  is 
artificially imposed and merely represents a measure  or  scale of  the system 
size. The true physical domain  ~"2phy  s : D d~ X O0 a" is actually larger (D > L) 
and its volume (at least in the finite dimensions) can at times depend 
strongly on the temperature,  as we shall see. 

The position of the interface(s) relative to the origin ( q = 0 )  is 
predetermined by the quan tum number  shift parameter  _r, and for a system 
with d * =  1 its position is found asymptotical ly from the zero(s) of  
Eq. (31 ), viz. 

1 1 (p 1 y) 
t / =  r/o ~ - + ~ y y  c ~  1 z cosh (33) 

where 

p = ~ + l  = 1 + r r 2 ( n + r )  2 (34) 

Equat ion (33) allows us to determine the behavior  o fx (q )  at any T in the 
vicinity of  the chosen interface, i.e., 

x < ( r / ) , ~ J  - I  ~ y-l(yl--qo)(1--pZ)U2(l+p2cos2~r)U2 (35) 

with a/L << r / -  qo << 1 and 0 < p < oo. In this interpretation _r may be 
regarded as a measure of  the "geometry-dependent  doping level" of inter- 
facial impurities in the extended system that  severely reduce magnetic 
fluctuations close to an interface. It  is shown here that  PBC ( r ~  0) 
represent the dilute limit where virtually no impurities exist except at 
infinity (i.e., qo ~ oz) and hence no pinning or infrared c u t o f f  119"2~ o c c u r s  

in the system, whereas APBC (r  ~ 1/2) represent saturat ion in which all 
available impurity states of the system are filled--i.e., no defects can occur 
inside/2.  In this sense, these position states appear  as fermionic in nature. 

6 The interfacial free energy for O(n) models with continuous symmetry/n >I 2) is proportional 
to the helicity modulus ~29~ and should be distinguished from Ising-type systems, whose 
corresponding interfacial free energy is proportional to the surface tension. "~ 
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At T <  To, y2 _.~ __n2,,s and from Eq. (34) 

(zev tan nv 1 

p2 ~ ~Y~ + 7r2r2' r < 

),2 + (~/2)2 , r = ~ 

From this the short-distance susceptibility (35) becomes 

(L) X < ( ~ )  ~,~' J -  l ~-~a 

(36a) 

(36b) 

( sin zrr 1 )y2% | 7~2"'~2 ' "s ~ (37a) 
(7 I ~ 0 ) ) 2 1 

~ "~  _~_ (~-~)2 '  ~ ' = 2  (37b) 

revealing the smooth  variat ion of the factor g~ as r-- ,  1/2 [see also 
Eq. (28)].  In the region of first-order phase transit ion the interface location 
(nearest to the origin) is independent of temperature ,  viz. 

I 1 
qo ~ - 4 - -  ~ , T < T c  (38) 

At the bulk critical temperature  for d = 3 we find that  y = c o s h -  l x, where 
x = ( ~ - s i n  2 rtr) uz and p = 2  sin 7rr, while the seam is now in a different 
position: 

1 c o s h - l [ x - l ( 5 - - 4 x 2 )  - l ]  
r/~ 2 2 cosh -1 x , T =  Tc (39) 

At the temperature  T =  To = (T)y ~ o, the interface has a location 

qo ~ �89 - �89 csc 2 zrz - 1) u2 (40) 

which coincides with (39) when setting r =  1/6 [see also Eq. (44)].  In the 
paramagnet ic  phase ( T > T c, y >> 1 ), we find that  p ~ 2e-Y sin 7rr << 1 and 
the domain  boundary  is now situated at 

m, ~y ln(sin 2 ~r) (41 T0 ) 

which, relative to L, for r =  0 (1 )  is very close to (and on the negative side 
of) the origin. In this (paramagnet ic)  phase, the short-distance suscep- 
tibility has no L dependence, whereby 

1 4 j  
X < (r) ~ 2J  a --'-T- ' a << F =  r - -  ~n ln(s in2 rcr) << ~n (42) 
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If r = 1/2, the two interfaces are in closest proximity as r/o,~ 0, I for all 
temperature. If r < 1/2, r/o is outside the range /2  for all T and is farthest 
away at lower temperatures. When ~ tends to zero, the interfaces spread 
out more until they reach infinity. 

In order to determine y (or ~b) as a function of size and temperature 
of the system one has to examine the constraint equation [for H - - 0 ;  see 
Eq. (13)] 

kBT _ I 
G(R = 0, T; Ld)= 1 = 2 ~  ~ ~b + 2 ~a= ,  (1 - -cos  kja) (43) 

which in scaled form, for a system confined to geometry /2 = L x oo 2 at 
T =  To (i.e., y = 0), becomes (19"3~ 

1 1 kBa 
ln(2 sin nr), L >> a (44) 

ro rc -4--)Z 

It is apparent from this that as r gets very small O(e -:L/kBr~) the 
temperature To slips out of the critical region and firmly into the region of 
first-order phase transition ( T < T c ) .  Specifically, by setting T - T o =  
( l +  1) - j  Tc in Eq. (44) where l >  0, we find that the correlation length (27) 
for a s~stem confined to the ferromagnetic domain s s = D x Go 2 of width 
D ~ x/2 L/nr becomes 

1 e4n:lL/kaTc=e2n[r(ro)/kBro]L (45) 
T= To "~ 2"~ "~' 

where Y(T) = 2JaSm~(T) = (2J/a)(1 - T/Tc) is the helicity modulus of the 
spherical model. 129) This is precisely the scaling behavior observed for 
under PBC in the region T <  T c ( d ' = 2 ,  d = 3 ) .  (28) In this limit of very 
small z, the temperature To < T~, separating real and imaginary y, appears 
to be where a type of large-scale structural phase transition occurs (while 
bulk quentities remain unaffected). To illustrate how this phase transition 
appears, we examine the (short) long-range order of the correlation 
function (2~ 

, (mZo(T) cos(2~R• T< To (46a) 
a-2dG(R << ~, T<T~;S,lphys)~ ~m2(T), 

T> To (46b) 

When r R J L =  O(1) and L << R =  O(~r=ro) << ~ we must have T <  To- -  
only then is the cosine factor in Eq. (46a) relevant. Otherwise if T >  T o, it 
is necessary that rR/L << 1 in order for R << ~r>ro << ~r=ro to con- 
tribute to the (short) long-range order in G(R). Therefore, at temperatures 
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above T O the parameter ~ (in this case governing the twist in the order 
parameter field) is irrelevant for G(R << 4, T >  To), while below T O it may 
play a dominant role, even for ~ exponentially small. 

Finally, it is instructive to determine the characteristic domain length 
D as a function of temperature for very small 3: 

(i) At T~> To> To, 

D ~ - -  In >> ~ --- ~B (47) 
Y 

where y = l n [ ( 1  +x /~) /2 ]  for T =  r c and y~L/2~B >> 1 for T >  To. 

(ii) At T o ~ < T < T c w e f i n d t h a t 0 ~ < y ~ ~ < <  1, and thus  

~L>~ x (48) D , ~ L c o s h  -1 1 +r--~z 2 
Y Y 

(iii) At T <  To, y2 ~ _n2r2 and 

D ~L/2z << ~ (49) 

One interesting feature here is that, although domain walls are farther 
apart at lower T (relative to a or L), their separation relative to ~ is indeed 
much narrower (or more correlated) than at higher temperatures. In region 
(iii) an extended striped ( d * =  1) or checkerboard ( d * = 2 ,  3 .... ) super- 
lattice of ferrodiamagnetic domains exists within the range of correlation 
(D << ~); moreover the interfaces are frozen independently of temperature 
for any T <  To (see also ref. 14). This effect should not be confused with the 
temperature-independent saturation for systems under APBC at all T >  0. 
In regions (i) and (ii), interface location shows a dependence on tem- 
perature through the (thermogeometric) parameter y(T; I2) and one finds 
that )(r/), for ~/ significantly outside the domain containing the origin 
(D > ~), gives unphysical results. 

4. C O N C L U D I N G  R E M A R K S  

The results reported in this paper provide a significant extension to an 
earlier calculation of the local susceptibility z(r, T; I2) of a finite-sized 
spherical model ferromagnet (~2 = L a- a'x ~ w, d' ~< 2) under antiperiodic 
boundary conditions. ~tt) Essentially, I repeat the analysis for the same 
system subject to a more general set of twisted boundary conditions, 
defined through a continuously varying parameter v(d-d ' ) ,  with com- 
ponents zj such that 0 ~< zj~< 1/2 [see Eq. (1)]; this generalizes the concept 
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of boundary conditions from the extreme case of PBC on the one hand to 
APBC on the other. It is appealing to leave r as an adjustable parameter, 
as it controls the collective-mode behavior of the system leading to a host 
of characteristic finite-size effects. These effects, in the case of the correla- 
tion function ~2~ and correlation length, ~]9) have been investigated recently 
and have shown a nontrivial dependence on ~ at various regimes of tem- 
perature. Similarly, in this study the finite-size scaling behavior of z(r) and 
the relative position of interfaces are also greatly influenced by this effect. 
By including the whole range of TBC in the analysis, new physical informa- 
tion is observed not evident for systems under PBC or even APBC. 

To begin with, I have shown that under all TBC the local suscep- 
tibility, as derived from the magnetization ( a ( r ) )  in the presence of 
a uniform external field ( H > 0 ) ,  is precisely the same as that derived 
from the zero-field ( H = 0 )  correlation function G ( R ) = ( t r ( r ) t r ( r ' ) ) =  
(tr(0) tr(R)) through the fluctuation-response theorem. Furthermore, it is 
remarkable that all relevant features of x(r) are retained if we replace the 
exact correlation function of Eq. (13) or (15) with its asymptotic version 
(valid for R, L >> a) in Eq. (20), and then apply an integration [Eq. (19)] 
instead of a summation [Eq. (12)] over the "initial" domain t2=  
L d- a' x 00 d'. A possible universal feature observed in this work that may 
apply to more general systems under the same conditions is the apparent 
shift in dimensionality of the system [d---,d*, cf. Eq. ( 2 0 ) ~ E q .  (23)] 
upon integrating (or summing) the correlation function over ett= Rtl/L in 
the d' (infinite) dimensions. 

Next, a closed-form description of the local susceptibility is used to 
provide information on the interface location(s) (or domain length D defin- 
ing ~C~phys = D  • 00 2) from the zero(s) of X(r/). Then the behavior ofx(q)  in 
the vicinity of the seam is found in terms of y(T; s for general T > 0 .  As 
r becomes exponentially small, a type of structural phase transition appears 
at To (<  To, where To = 0 at r = 0), very similar in form to the "second 
transition" observed for the spherical model under external boundary 
conditions. (14) Although there can be no well-defined bulk analog to this 
phenomenon without applying an external field, similar properties exist 
between the two phase transitions. For instance, a ground-state condensa- 
tion takes place for T <  To (i.e., the magnetization profile freezes), while a 
generalized condensation of a possible infinite number of low-lying energy 
levels occurs for To < T <  Tc (i.e., there is a temperature dependence in the 
profile)--for d~tails and further references, see Patrick. (14) When T < To we 
find that L << D << ~ (y2<0) ,  whereas if T >  T O , L << ~ < D  (y2>0) .  
This is reminiscent of a commensurate-incommensurate (CI) tran- 
sition, ~6'31) in that there is a periodic superstructure of domains commen- 
surate with the ground-state spin-wave mode ko = 2r~r_/L at T <  To. In the 
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incommensurate phase (T>  To), this periodicity is irrelevant, as the loca- 
tion of domain walls now depends continuously on temperature, while 
results significantly outside the domain t2phy s are essentially uncorrelated. 
The main difference is that a CI transition is customarily investigated for 
models with competing short-range interactions providing a microscopic 
modulation in the system [D ~< O(~s) << L],  whereas here the competition 
is between ferromagnetic nearest neighbor interactions and the imposed 
(internal) nonperiodic boundary conditions (0<r~< 1/2), varying over 
much larger length scales [~ >> D>~O(L)], thereby causing a much 
weaker (yet influencial) macroscopic modulation in the system. 
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